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A H Sakka

Department of Mathematics, Islamic University of Gaza, PO Box 108, Rimal, Gaza, Palestine

E-mail: asakka@mail.iugaza.edu

Received 30 June 2008, in final form 30 October 2008
Published 4 December 2008
Online at stacks.iop.org/JPhysA/42/025210

Abstract

In this paper, we show that the expansion of linear problems of the Painlevé
equation in powers of the spectral variable can be used to derive hierarchies of
ordinary differential equations. We applied this approach to linear problems
of the first, second, third and fourth Painlevé equations. We derived a new
hierarchy of the third Painlevé equation and rederived known hierarchies of
the other equations. Moreover some special solutions of the hierarchies of the
second, third and fourth Painlevé equations are also given.

PACS numbers: 02.30.Ik, 02.30.Hq

1. Introduction

In the last three decades there has been much interest in searching for higher order analogues
of Painlevé equations. There are several methods for deriving higher order analogues of
Painlevé equations. Some of these methods are the α-method used by Painlevé and his school,
the Painlevé test and the similarity reductions of higher order completely integrable partial
differential equations. The last method leads to the derivation of Painlevé hierarchies, that is,
sequences of ordinary differential equations whose first members are Painlevé equations.

One of the important properties of the six Painlevé equations (PI–PVI) is that each Painlevé
equation can be written as a compatibility condition of a linear system

�λ(x, λ) = A(x, λ)�(x, λ), �x(x, λ) = B(x, λ)�(x, λ), (1)

where

A(x, λ) =
N+n∑
j=0

Ajλ
N−j , B(x, λ) =

L+l∑
j=0

Bjλ
L−j , (2)

and Aj and Bj are matrices with entries depending on the solution u(x) of the Painlevé
equation [1–5]. These linear problems are not unique. For example, the second Painlevé
equation has two different linear problems, one given by Flaschka and Newell [2] and the
other one given by Jimbo and Miwa [1].
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Gordoa, Joshi and Pickering [6] derived Jimbo–Miwa linear problems for second and
fourth Painlevé hierarchies. This leads to the observation that these hierarchies can be
obtained by expanding the Jimbo–Miwa linear problems of PII and PIV in powers of the
spectral variable λ. In this paper, we will show that this approach can be applied to many
linear problems of Painlevé equations. More precisely, given a linear problem (1–2) for a
Painlevé equation, we generalize it by replacing the fixed number N in (2) by a parameter
M � N . While the compatibility condition gives the considered Painlevé equation when
M = N , it gives higher order analogues of this equation when M > N . We illustrate this by
the application to the linear problem for the first Painlevé equation given by Jimbo and Miwa
[1, 3], the linear problem for the second Painlevé equation given by Flaschka and Newell [2],
the linear problem for the third Painlevé equation given by Joshi, Kitaev and Treharne [7], and
the linear problem for the fourth Painlevé equation given by Kitaev [4] and Milne, Clarkson,
Bassom [5]. It turns out that the resulting hierarchies are the first and the second Painlevé
hierarchies given in [8, 9], the fourth Painlevé hierarchy given in [10], and a new third Painlevé
hierarchy.

We will also give some special solutions of the second, third and fourth Painlevé
hierarchies. The special solutions of the second Painlevé hierarchy are solved in terms of
the first Painlevé hierarchy and the special solutions of the fourth Painlevé hierarchy are
solved in terms of the second Painlevé hierarchy. Using the relation between the fourth and
the second Painlevé hierarchies, we will obtain a new linear problem for the second Painlevé
hierarchy and in particular a new linear problem for the second Painlevé equation.

2. First Paninlevé hierarchy

As it is well known, the first Painlevé equation,

uxx = 6u2 + x, (3)

can be obtained as the compatibility condition of the linear system (1), where A and B are the
following matrices [1, 3]:

B = B0λ + B2λ
−1, A =

5∑
j=0

Ajλ
4−j ,

B0 = −iσ3, B2 = iu(σ3 − iσ2),

A0 = −4iσ3, A1 = 0,

A2 = 4uσ2, A3 = 2uxσ1,

A4 = −i(2u2 + x)(σ3 − σ2), A5 = −1

2
σ1,

(4)

and σj , j = 1, 2, 3, denote the Pauli matrices

σ3 =
(

1 0
0 −1

)
, σ2 =

(
0 −i
i 0

)
, σ1 =

(
0 1
1 0

)
. (5)

As we mentioned in the introduction, we will use a generalization of the linear problem (1, 4)
to derive a hierarchy of ordinary differential equations. More precisely, we assume that

B = B0λ + B2λ
−1, A =

2m+3∑
j=0

Ajλ
2m+2−j , (6)
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where m is a positive integer. The compatibility condition �xλ = �λx of equation (1) reads

Ax = Bλ + [B,A]. (7)

Substituting A and B from (6) into (7), we obtain

0 = [B0, A0], A0,x = [B0, A1],

Aj,x = [B0, Aj+1] + [B2, Aj−1], j = 1, 2, . . . , 2m + 1,

A2m+2,x = B0 + [B0, A2m+3] + [B2, A2m+1],

A2m+3,x = [B2, A2m+2], B2 = [B2, A2m+3].

(8)

Taking into account the linear problem (1) and (4), we assume that

B0 = σ3, B2 = u(σ3 + iσ2), A0 = 4σ3, A1 = 0, A2m+3 = 1

2
σ1,

Aj =
(

aj bj

(−1)j+1bj −aj

)
, j = 2, . . . , 2m + 2,

(9)

where a2j−1 = 0, j = 2, . . . , m + 1. Then equation (8) gives

a2j,x = 2ub2j−1, j = 1, 2, . . . , m, (10a)

a2m+2,x = 1 + 2ub2m+1, (10b)

bj,x = 2bj+1 + 2u(bj−1 − aj−1), j = 0, 1, . . . , 2m + 1, (10c)

b2m+2 − a2m+2 = 0. (10d)

For any positive integer m, any a0 �= 0, and a1 = b1 = 0, (10a)–(10d) determines a2j , j =
1, 2, . . . , m + 1, and bj , j = 2, 3, . . . , 2m + 2, recursively. Moreover the condition
b2m+2 − a2m+2 = 0 gives an ordinary differential equation of the order 2m for u.

Let us be more specific. Define Uj = b2j − a2j , j = 0, 1, . . . , m and Um+1 =
b2m+2 − a2m+2 + x. Then using equation (10a)–(10d), we obtain

DxUj = 2b2j+1, j = 1, 2, . . . , m + 1, (11)

where Dx = d
dx

. Using equation (10c) to substitute b2j+1 into (11), we obtain

DxUj = Dxb2j − 2ub2j−1. (12)

Now substitute b2j from (10c) and b2j−1 from (11) into (12), we get

DxUj = 1
4

(
D3

x − 8uDx − 4ux

)
Uj−1, j = 1, . . . , m + 1. (13)

Integrating (13), we obtain

Uj = 1
4

(
D2

x − 8u + 4D−1
x ux

)
Uj−1 − 41−jK2j , j = 1, . . . , m + 1, (14)

where K2j are constants of integration and D−1
x is the inverse operator of Dx . Without loss of

generality we will take K2 = K2m+2 = 0.
Since U0 = −4, (14) yields U1 = 4u. Thus using induction, we can write Uj as

Uj = 42−j

[
Rj−1

I u +
j−1∑
i=2

K2iRj−i−1
I u

]
− 41−jK2j , j = 2, . . . , m + 1, (15)

where RI is the recursion operator

RI = D2
x − 8u + 4D−1

x ux. (16)
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Now a2j , j = 1, 2, . . . , m + 1, and bj , j = 2, 3, . . . , 2m + 2, can be determined in terms
of Uj as follows:

b2j+1 = 1
2DxUj , j = 1, 2, . . . , m,

b2j = 1
4

(
D2

x − 4u
)
Uj−1, j = 1, . . . , m + 1,

a2j = (
u − D−1

x ux

)
Uj−1 + 41−jK2j , j = 1, . . . , m

a2m+2 = (
u − D−1

x ux

)
Um + x.

(17)

The condition

b2m+2 − a2m+2 = 0 (18)

yields the equation Um+1 = x. Substituting Um+1 from (15) into Um+1 = x, we get the
following hierarchy of ordinary differential equations of orders 2m for u:

Rm
I u +

m∑
i=2

K2iRm−i
I u − 4m−1x = 0. (19)

It is easy to show that when m = 1, (19) gives the first Painlevé equation (3). Thus the
hierarchy (19) is a first Painlevé hierarchy. Now we will consider the cases m = 2 and m = 3.

Example 1. In this example, we consider the case m = 2. Equation (19) yields the following
fourth-order ordinary differential equation:

uxxxx = 20uuxx + 10u2
x − 40u3 − K4u + 4x. (20)

Equation (20) has a linear problem (1) with B = σ3λ+u(σ3 + iσ2)λ
−1 and A = ∑7

j=0 Ajλ
6−j ,

where A0 = 4σ3, A1 = 0, A7 = 1
2σ1, and Aj = (

aj bj

(−1)j+1bj −aj

)
, j = 2, 3, 4, 5, 6, a2 = a3 =

a5 = 0, a2j , j = 1, 2, 3, and bj , j = 2, 3, 4, 5, 6 are given as follows:

b2 = 4u, b3 = 2ux, a4 = 2u2 + 1
4K4, b4 = uxx − 4u2,

b5 = 1
2 [uxxx − 12uux], a6 = uuxx − 1

2u2
x − 4u3 + x,

b6 = 1
4

[
uxxxx − 16uuxx − 12u2

x + 24u3 + K4u
]
.

(21)

The equation (20) was found previously by Cosgrove [11] and it is the second member of
the first Painlevé hierarchy [8, 9]. However the linear problem given here is new.

Example 2. As another example we consider the case m = 3. Thus (19) gives the following
sixth-order ordinary differential equation:

uxxxxxx = 28uuxxxx + 56uxuxxx + 42u2
xx − (280u2 + K4)uxx

− 280uu2
x + 280u4 + 6K4u

2 − K6u + 16x. (22)

The linear problem for (22) has the form (1), with B = σ3λ + u(σ3 + iσ2)λ
−1 and

A = ∑9
j=0 Ajλ

8−j , where A0 = 4σ3, A1 = 0, A9 = 1
2σ1, and Aj = (

aj bj

(−1)j+1bj −aj

)
, j =

2, 3, . . . , 8, a2 = a3 = a5 = a7 = 0, a2j , j = 2, 3, 4, and bj , j = 2, 3, . . . , 8, are given as
follows:

b2 = 4u, b3 = 2ux, a4 = 2u2 + 1
4K4, b4 = uxx − 4u2,

b5 = 1
2 [uxxx − 12uux], a6 = uuxx − 1

2u2
x − 4u3 + 1

16K6,

b6 = 1
4

[
uxxxx − 16uuxx − 12u2

x + 24u3 + K4u
]
,

b7 = 1
8 [uxxxxx − 20uuxxx − 40uxuxx + (120u2 + K4)ux],

a8 = 1
8

[
2uuxxxx − 2uxuxxx + u2

xx − 40u2uxx + 60u4 + K4u
2 + 8x

]
,

b8 = 1
16

[
uxxxxxx − 24uuxxxx − 60uxuxxx − 40u2

xx

+ (200u2 + K4)uxx + 280uu2
x − 160u4 − 4K4u

2 + K6u
]
.

(23)
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Equation (22) is the third member of the first Painlevé hierarchy [8, 9], but the linear
problem is new.

Therefore, we have rederived the first Painlevé hierarchy [8, 9]. It should be noted that in
[8, 9], the constants of integrations have been chosen to be zero.

3. Second Painlevé hierarchy

It is well known that the second Painlevé equation,

uxx = 2u3 + xu + α, (24)

can be obtained as the compatibility condition of (1) where A and B are given by [2]

B = B0λ + B1, A =
3∑

j=0

Ajλ
2−j ,

B0 = −iσ3, B1 = uσ1,

A0 = −4iσ3, A1 = 4uσ1,

A2 = −i(2u2 + x)σ2 − 2uxσ2, A3 = −ασ1.

(25)

In this case, we will use the following generalization of the linear problem (1, 25):

B = B0λ + B1, A =
2m+1∑
j=0

Ajλ
2m−j , (26)

where m is a positive integer and

B0 = σ3, B1 = uσ1, A0 = −4σ3, A2m+1 = −ασ1,

Aj =
(

aj bj

(−1)j+1bj −aj

)
, j = 1, 2, . . . , 2m,

(27)

with a2j−1 = 0, j = 1, . . . , m. The compatibility condition of equation (1) gives

A2m+1,x = [B1, A2m+1], A2m,x = B0 + [B0, A2m+1] + [B1, A2m],

Aj,x = [B0, Aj+1] + [B1, Aj ], j = 0, 1, 2, . . . , 2m − 1, 0 = [B0, A0].
(28)

Substituting Aj and Bj from (27) into equation (28) yields

a2j,x = −2ub2j , j = 0, 1, . . . , m − 1, (29a)

a2m,x = 1 − 2ub2m, (29b)

bj,x = 2bj+1 − 2uaj , j = 1, 2, . . . , 2m. (29c)

The equations (29a)–(29c) determine a2j , j = 1, . . . , m, and bj , j = 1, 2, . . . , 2m + 1,

recursively. Imposing the condition b2m+1 = −α, one obtains an ordinary differential equation
of the order 2m for u.

More precisely, let

Uj = b2j+1, j = 1, . . . , m − 1,

Um = b2m+1 − xu.
(30)

Then the equation b2m+1 = −α can be written as

Um + xu + α = 0. (31)

5
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Now note that (29a) and (29b) imply

a2j = −2D−1
x ub2j + K2j , j = 1, . . . , m,

a2m = −2D−1
x ub2m + x + K2m,

(32)

where K2j are constants of integration. Substituting into equation (29c), we obtain

b2j+1 = 1
2

(
Dx − 4uD−1

x u
)
b2j + K2ju, j = 1, . . . , m − 1,

b2m+1 = 1
2

(
Dx − 4uD−1

x u
)
b2m + xu + K2mu.

(33)

Now substituting b2j from (29c) into (33), we get

b2j+1 = 1
4

(
D2

x − 4u2 + 4uD−1
x ux

)
b2j−1 + K2ju j = 1, . . . , m − 1,

b2m+1 = 1
4

(
D2

x − 4u2 + 4uD−1
x ux

)
b2m−1 + xu + K2mu.

(34)

Thus, we have

Uj = 1
4

(
Dx − 4u2 + 4uD−1

x ux

)
Uj−1 + K2ju, j = 1, . . . , m. (35)

Using (29a)–(29c) with a0 = −4, b0 = 0, we obtain U0 = b1 = −4u. Hence using
induction we can rewrite (35) in the form

Uj = −41−j

(
Rj

II u −
j−1∑
i=1

K2iRj−i

I I u

)
+ K2ju, j = 1, . . . , m, (36)

where RII is the recursion operator

RII = D2
x − 4u2 + 4uD−1

x ux. (37)

Using (36) to calculate Uj , j = 1, . . . , m, we can determine a2j , j = 1, . . . , m, and
bj , j = 1, 2, . . . , 2m, as follows:

b2j+1 = Uj , j = 0, 1, . . . , m − 1,

b2j = 1
2DxUj−1, j = 1, 2, . . . , m,

a2j = −(
u − D−1

x ux

)
Uj−1 + K2j , j = 1, . . . , m − 1

a2m = −(
u − D−1

x ux

)
Um−1 + x + K2m.

(38)

Without loss of generality we will take K2m = 0.

Lastly, equation (31) yields the following hierarchy:

Rm
IIu −

m−1∑
i=1

K2iRm−i
I I u − 4m−1(xu + α) = 0. (39)

In the case m = 1, equation (39) reduces to the second Painlevé equation (24). Therefore
the hierarchy (39) is a second Painlevé hierarchy. Now we will consider the cases m = 2 and
m = 3.

Example 1. In this example, we consider the case m = 2. Hence, equation (39) yields the
following fourth-order ordinary differential equation for u:

uxxxx = 10u2uxx + K2uxx + 10uu2
x − 6u5 − 2K2u

3 + 4xu + 4α. (40)

Equation (40) has the linear problem (1) with B = σ3λ + uσ1 and A = ∑5
j=0 Ajλ

4−j , where

A0 = −4σ3, A5 = −ασ1, and Aj = (
aj bj

(−1)j+1bj −aj

)
, j = 1, 2, 3, 4, a1 = a3 = 0, a2j , j =

1, 2, and bj , j = 1, 2, 3, 4 are given by

b1 = −4u, b2 = −2ux, a2 = 2u2 + K2, b3 = −[uxx − 2u3 − K2u],

b4 = − 1
2 [uxxx − 6u2ux − K2ux], a4 = 1

2 [2uuxx − u2
x − 3u4 − K2u

2 + 2x].
(41)

6
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Equation (40) was found before [11, 12] and the special case K2 = 0 with its linear
problem was given in [9]. The linear problem for the full equation (40) is not given before.

Example 2. Let us take m = 3. In this case equation (39) yields the following sixth-order
ordinary differential equation for u:

uxxxxxx = (14u2 + K2)uxxxx + 56uuxuxxx + 42uu2
xx + 70u2

xuxx − 2(35u4 + 5K2u
2 − 2K4)uxx

− 10(14u2 + K2)uu2
x + 20u7 + 6K2u

5 − 8K4u
3 + 16xu + 16α. (42)

Equation (42) has the linear problem (1) with B = σ3λ + uσ1 and A = ∑7
j=0 Ajλ

6−j ,

where A0 = −4σ3, A7 = −ασ1, and Aj = (
aj bj

(−1)j+1bj −aj

)
, j = 1, . . . , 6, a1 = a3 = a5 =

0, a2j , j = 1, 2, 3 and bj , j = 1, . . . , 6 are given by

b1 = −4u, b2 = −2ux, a2 = 2u2 + K2, b3 = −[uxx − 2u3 − K2u],

b4 = − 1
2 [uxxx − 6u2ux − K2ux], a4 = 1

2

[
2uuxx − u2

x − 3u4 − K2u
2 + 2K4

]
,

b5 = − 1
4

[
uxxxx − 10u2uxx − 10uu2

x − K2uxx + 6u5 + 2K2u
3 − 4K4u

]
b6 = − 1

8

[
uxxxxx − (10u2 + K2)uxxx − 40uuxuxx − 10u2

x + 2(15u4 + 3K2u
2 − 2K4)ux

]
a6 = 1

8

[
2uuxxxx − 2uxuxxx + u2

xx − 2(10u2 + K2)uuxx

− (10u2 − K2)u
2
x + 10u6 + 3K2u

4 − 6K4u
2 + 8x

]
. (43)

Equation (42) is the third member of the second Painlevé hierarchy given in [9] but here
we do not take the integration constants to be zeros.

3.1. Special solutions

In this subsection, we will study special solutions of the second Painlevé hierarchy (39). It is
well known that the second Painlevé equation (24) admits a special solution in terms of the
Airy function when α = −1

2 . This fact can be generalized to the other members of the second
Painlevé hierarchy (39).

We note that RII = (Dx − 2u)
(
Dx + 2u − 2D−1

x ux

)
. Thus (39) can be rewritten as

(Dx − 2u)

{
2
(
Dx + 2u − 2D−1

x ux

) [
Rm−1

II u −
m−1∑
i=1

K2iRm−1−i
I I u

]
+ 4m−1x

}

− 4m−1(2α + 1) = 0. (44)

Therefore, if 2α + 1 = 0, then the second Painlevé hierarchy (39) admits special solutions
satisfying

2
(
Dx + 2u − 2D−1

x ux

) [
Rm−1

II u −
m−1∑
i=1

K2iRm−1−i
I I u

]
+ 4m−1x = 0. (45)

We will show that for any m � 2, (45) is solvable in terms of the first Painlevé hierarchy
(19). Let

R = (
Dx + 2u − 2D−1

x ux

)
(Dx − 2u), y = 1

2 (ux + u2). (46)

Then we have

R = D2
x − 8y + 4D−1

x yx. (47)

7
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Since RII = (Dx − 2u)
(
Dx + 2u − 2D−1

x ux

)
, we have

Rj

II = (Dx − 2u)Rj−1(Dx + 2u − 2D−1
x ux

)
. (48)

Thus equation (45) can be written as

2Rm−1(Dx + 2u − 2D−1
x ux

)
u − 2

m−1∑
i=1

K2iRm−1−i
(
Dx + 2u − 2D−1

x ux

)
u + 4m−1x = 0. (49)

But
(
Dx + 2u − 2D−1

x ux

)
u = ux + u2 = 2y. Hence equation (49) becomes

Rm−1y −
m−1∑
i=1

K2iRm−1−iy + 4m−2x = 0, (50)

which is equivalent to the first Painlevé hierarchy (19).
Therefore, we have shown that the solution of (45) is given by ux + u2 = 2y, where y

solves the first Painlevé hierarchy (50). This relation between the first and second Painlevé
hierarchies was given before [13]. Using this relation, we can rederive the linear problem for
the first Painlevé hierarchy (50) given in [9] from the linear problem (1) and (26) of the second
Painlevé hierarchy (39). Thus one can derive the first Painlevé hierarchy (19) starting from
the linear problem of the first Painlevé equation given by Fokas, Muğan and Zhou [3].

When m = 2, equation (45) reads

uxxx + 2uuxx − u2
x − 6u2ux − 3u4 − K2(ux + u2) + 2x = 0. (51)

That is, if 2α +1 = 0, then (40) has special solutions satisfying (51). Equation (51) is a special
case of the Chazy-XI equation (with N = 3) [14] and its solution is given by ux + u2 = 2y,
where y solves the first Painlevé equation

yxx = 6y2 + K2y − x. (52)

Similarly, if 2α + 1 = 0, then (42) has special solutions satisfying

uxxxxx + 2uuxxxx − 2(ux + 5u2)uxxx + u2
xx − 20u(2ux + u2)uxx − 10u3

x − 10u2u2
x + 30u4ux

+ 10u6 − K2
[
uxxx + 2uuxx − u2

x − 6u2ux − 3u4] − K4(ux + u2) + 8x = 0.

(53)

The solution of (53) is given by ux + u2 = 2y, where y solves the second member of the first
Painlevé hierarchy (50)

yxxxx − 20yyxx − 10y2
x + 40y3 − K2(yxx − 6y2) − K4y + 4x = 0. (54)

4. Third Painlevé hierarchy

In [7], the third Painlevé equation,

uxx = u2
x

u
− 1

x
ux +

1

x
(αu2 + β) + γ u3 +

δ

u
, (55)

has been written as the compatibility condition of the linear system (1) where

B = B0λ + B1, A =
2∑

j=0

Ajλ
−j ,

B0 = 1

2
σ3, B1 = 1

x

(
0 −w̃3

w3 0

)
, A0 = x

2
σ3,

A1 =
(−θ∞/2 −w̃3

w3 θ∞

)
, A2 = −

(
w2w̃2 w1w2

w̃1w̃2 w1w̃1

)
,

(56)

and u = w̃3
xw1w2

.

8
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In this section, we will use the linear problem (1, 56) to obtain a hierarchy of the ordinary
differential equation, namely a third Painlevé hierarchy. We assume that

B = B0λ + B1, A =
m+1∑
j=0

Ajλ
m−j−1, (57)

where m is a positive integer. Moreover we set

B0 = 1

2
σ3, B1 =

(
0 p

q 0

)
, Aj =

(
aj bj

cj −aj

)
, j = 0, 1, . . . , m + 1. (58)

The compatibility condition of equation (1) gives

0 = [B0, A0], Am+1,x = [B1, Am+1], Am,x = [B0, Am+1] + [B1, Am],

Am−1,x = B0 + [B0, An] + [B1, An−1],

Aj,x = [B0, Aj+1] + [B1, Aj ], j = 0, 1, . . . , m − 2.

(59)

Substituting Aj and Bj from (58) into equation (59), we obtain A0 = a0σ3

aj,x = pcj − qbj , j = 0, 1, . . . , m − 2,m,

am−1,x = 1
2 + pcm−1 − qbm−1,

bj,x = bj+1 − 2paj , j = 0, 1, . . . , m,

cj,x = −cj+1 + 2qaj , j = 0, 1, . . . , m,

(60)

and

am+1,x = pcm+1 − qbm+1, bm+1,x = −2pam+1, cm+1,x = 2qam+1. (61)

For any positive integer m, the formulae (60) determine aj , j = 0, 1, . . . , m, bj , j =
1, 2, . . . , m + 1, and cj , j = 1, 2, . . . , m, recursively. Moreover (61) has the following
two first integrals:

cmbm+1 + bmcm+1 + 2amam+1 = γ2, (62)

bm+1cm+1 + a2
m+1 = γ3, (63)

where γ2 and γ3 are constants of integrations. Using the parameterization am+1 = v, bm+1 = w,

and p = uw, we obtain from (63)

cm+1 = −1

w
(v2 − γ3), (64)

and hence (62) gives

cm = 1

w

[
1

w
(v2 − γ3)bm − 2vam + γ2

]
. (65)

The system (61) yields

wx = −2uvw, q = −1

w
[vx + u(v2 − γ3)]. (66)

As a last step we impose the conditions

bm+1 = w, cm = 1

w

[
1

w
(v2 − γ3)bm − 2vam + γ2

]
(67)

to obtain an mth order system for u and v. Eliminating one of the two dependent variables u
and v between the two equations in the system, one obtains a differential equation of the order
2m for the other variable.

9
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Let us consider the case m = 1 in brief. As we explained above, we set a2 = v, b2 = w,

p = uw. Then (64) becomes c2 = −1
w

(v2 − γ3) and the formulae (60) give

a0 = 1
2x, a1 = 1

2γ1, b1 = xuw, c1 = −x
w

[vx + u(v2 − γ3)],

b2 = w[xux − 2xu2v + (γ1 + 1)u].
(68)

Equation (67) gives

xux = 2xu2v − (γ1 + 1)u + 1, xvx = −2xu(v2 − γ3) + γ1v − γ2. (69)

The function tu(t), where x = t2 satisfies the third Painlevé equation (55) with α = −8γ2, β =
4(γ1 + 1), γ = 16γ3 and δ = −4.

Now we will give explicit forms for the hierarchy (67) when m � 2. In this case
equation (60) gives a0,x = 0. Without loss of generality we take a0 = 1

2 . Introducing the
notations

Uj = bj+1

w
, j = 0, 1, . . . , m − 2,

Um−1 = bm

w
− xu,

Um = bm+1

w
− u − x(ux − 2u2v),

Vj = wcj − (v2 − γ3)
bj

w
+ 2vaj , j = 0, 1, . . . , m − 2,

Vm−1 = wcm−1 − (v2 − γ3)
bm−1

w
+ v(2am−1 − x),

Vm = wcm − (v2 − γ3)
bm

w
+ 2vam + x[vx + 2u(v2 − γ3)],

(70)

and then using (60), we have(
Uj

Vj

)
= RIII

(
Uj−1

Vj−1

)
+ 2Kj

(
u

v

)
, j = 1, 2, . . . , m, (71)

where Kj are constants of integration and RIII is the recursion operator

RIII =
(

Dx − 2uv + 2uD−1
x vx −2u2 + 2uD−1

x ux

−2(v2 − γ3) + 2vD−1
x vx −Dx − 2uv + 2vD−1

x ux

)
. (72)

Without loss of generality, we set Km = 1
2γ1, and Km−1 = 0.

Since U0 = u, V0 = v, (71) implies that Uj , Vj , j = 1, . . . , m are given by(
Uj

Vj

)
= Rj

III

(
u

v

)
+ 2

j−2∑
i=1

KiRj−i

I I I

(
u

v

)
+ 2Kj

(
u

v

)
, j = 1, 2, . . . , m. (73)

The equations (67) and (70) imply

Um = −x(ux − 2u2v) + 1 − u, Vm = x[vx + 2u(v2 − γ3)] + γ2. (74)

Therefore, the hierarchy reads

Rm
III

(
u

v

)
+ 2

m−2∑
i=1

KiRm−i
I I I

(
u

v

)
+ x

(
ux − 2u2v

−vx − 2u(v2 − γ3)

)

+ γ1

(
u

v

)
=

(
1 − u

γ2

)
, m � 2. (75)

10
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The hierarchy (75) has a linear problem given by (1) and (57) where

B0 = 1

2
σ3, B1 =

(
0 uw

−1
w

[vx + u(v2 − γ3)] 0

)
, A0 = 1

2
σ3,

Am+1 =
(

v w
−1
w

(v2 − γ3) −v

)
, Aj =

(
aj bj

cj −aj

)
, j = 1, . . . , m,

(76)

and aj , bj , and cj , j = 1, 2, . . . , m are given by the following formulae:

bj = wUj−1, j = 1, . . . , m − 1,

bm = w(Um−1 + xu),

cj = 1

w
[Vj + (v2 − γ3)Uj−1 − 2vaj ], j = 1, . . . , m − 2,

cm−1 = 1

w
[Vm−1 + (v2 − γ3)Um−2 − v(2am−1 − x)],

cm = 1

w
[(v2 − γ3)(Um−1 + xu) − 2vam + γ2],

a1 =
⎧⎨
⎩

x

2
+ K1, m = 2,

K1, m �= 2,

a2 =
⎧⎨
⎩−b1c1 +

x

2
+ K2, m = 3,

−b1c1 + K2, m �= 3,

aj = −
j−1∑
k=1

(bkcj−k + akaj−k) + Kj, j = 3, 4, . . . , m − 2,

am−1 = −
m−2∑
k=1

(bkcm−k−1 + akam−k−1) +
x

2
,

am = −
m−1∑
k=1

(bkcm−k + akam−k) + K1x +
1

2
γ1.

(77)

In the following examples we will consider the cases m = 2 and m = 3.

Example 1. As a first example of higher order analogue of the third Painlevé equation let us
consider the case m = 2. In this case, (75) gives the following system for u and v:

uxx = (6uv − x)ux − 6u3v2 + 2xu2v + 2γ3u
3 − (γ1 + 1)u + 1,

vxx = −(6uv − x)vx − 2u(3uv − x)(v2 − γ3) − γ1v + γ2.
(78)

Eliminating v, equation (78) gives a fourth-order equation for u.
Equation (78) has the linear problem (1) with B = B0λ + B1 and A = ∑3

j=0 Ajλ
2−j ,

where B0, B1, and A0 are given by (76), A3 = (
v w

−1
w

(v2−γ3) −v

)
, and Aj = (

aj bj

cj −aj

)
, j = 1, 2,

where aj , bj , cj are given as follows:

a1 = 1

2
x, b1 = uw, c1 = −1

w
[vx + u(v2 − γ3)],

a2 = u[vx + u(v2 − γ3)] +
1

2
γ1, b2 = w[ux − 2u2v + xu],

c2 = 1

w
[(ux − 4u2v + xu)(v2 − γ3) − 2uvvx − γ1v + γ2].

(79)

Therefore we have derived a new fourth-order equation together with its linear problem.

11
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Example 2. As another example, we will consider the case m = 3. In this case the
equation (75) yields the following system for u and v:

uxxx = 2(4uv − K1)uxx + 6vu2
x + (4uvx − 30u2v2 + 6γ3u

2 + 12K1uv − x)ux + 2u2vxx

+ 20u4v3 − 12K1u
3v2 − 12γ3u

4v + 4K1γ3u
3 + 2xu2v − (γ1 + 1)u + 1,

(80)
vxxx = −2(4uv − K1)vxx − 6uv2

x + (4vux + 30u2v2 − 6γ3u
2 − 8K1uv + x)vx

+ 2(v2 − γ3)(uxx + 10u3v2 − 6K1u
2v − 2γ3u

3 + xu) + γ1v − γ2.

Eliminating v, equation (80) gives a sixth-order equation for u.

The linear problem for (80) is given by (1) with B = B0λ + B1 and A = ∑4
j=0 Ajλ

2−j , where

B0, B1, and A0 are given by (76), A4 = (
v w

−1
w

(v2−γ3) −v

)
,

Aj = (
aj bj

cj −aj

)
, j = 1, 2, 3, and aj , bj , cj are given as follows:

a1 = K1, b1 = uw, c1 = −1

w
[vx + u(v2 − γ3)],

a2 = u[vx + u(v2 − γ3)] +
1

2
x, b2 = w[ux − 2u2v + 2K1u],

c2 = 1

w
[vxx + 2(2uv − K1)vx + (ux + 2u2v − 2K1u)(v2 − γ3)],

a3 = −[uvxx − (ux − 6u2v + 2K1u)vx + 2u2(2uv − K1)(v
2 − γ3)] +

1

2
γ1,

b3 = w[uxx − 2(3uv − K1)ux + 6u3v2 − 4K1u
2v − 2γ3u

3 + xu],

c3 = 1

w
[2uvvxx − 2v(ux − 6u2v + 2K1u)vx − γ1v + γ2

+ {uxx − 2(3uv − K1)ux + 14u3v2 − 8K1u
2v − 2γ3u

3 + xu)}(v2 − γ3)]. (81)

The above two examples show that we can derive a new hierarchy of differential
equations (75). Since the first member of this hierarchy is the third Painlevé equation,
this hierarchy is a third Painlevé hierarchy.

4.1. Special solutions

Let us study some special solutions of the third Painlevé hierarchy (75). Assume γ1 �= 0,

v = γ2

γ1
and γ 2

2 = γ3γ
2
1 . Then (71) gives Vj = 2Kj

γ2

γ1
, j = 1, 2, . . . , m, and

Uj =
(

Dx − 2
γ2

γ1
u

)j

u + 2
j−2∑
i=1

Ki

(
Dx − 2

γ2

γ1
u

)j−i

u + 2Kju. (82)

The hierarchy (75) becomes

(
Dx − 2

γ2

γ1
u

)m

u + 2
m−2∑
i=1

Ki

(
Dx − 2

γ2

γ1
u

)m−i

u + (γ1 + 1)u + x

(
ux − 2

γ2

γ1
u

)
= 1. (83)

Therefore if γ1 �= 0, v = γ2

γ1
and γ 2

2 = γ3γ
2
1 , then the third Painlevé hierarchy (75) admits

special solutions given by (83).

12
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If γ2 = 0, then equation (83) is linear. If γ2 �= 0, then the transformation u = − γ1yx

2γ2y

transforms equation (83) into the linear equation

Dm+1
x y + 2

m−2∑
i=1

KiD
m−i+1
x y + xyxx + (γ1 + 1)yx + 2

γ2

γ1
y = 0. (84)

Let us give the explicit form of (83) when m = 2, 3; that is, the special solutions of (78)
and (80).

Equation (78) has a special solution γ 2
2 = γ3γ

2
1 , v = γ2

γ1
and u satisfies

uxx = 6
γ2

γ1
uux − 4

γ 2
2

γ 2
1

u3 − x

(
ux − 2

γ2

γ1
u2

)
− (γ1 + 1)u + 1. (85)

If γ2 �= 0, then equation (85) is equivalent to equation PVI in the complete list of second-order
Painlevé equations (see [15] page 334). The transformation u = − γ1yx

2γ2y
transforms (85) into

the linear equation

yxxx = −xyxx − (γ1 + 1)yx − 2
γ2

γ1
y. (86)

Equation (80) has a special solution γ 2
2 = γ3γ

2
1 , v = γ2

γ1
and u satisfies

uxxx = 2
γ2

γ1

(
4uuxx + 3u2

x

) − 24
γ 2

2

γ 2
1

u2ux + 8
γ 3

2

γ 3
1

u4 − 2K1

(
uxx − 6

γ2

γ1
uux + 4

γ 2
2

γ 2
1

u3

)

− x

(
ux − 2

γ2

γ1
u2

)
− (γ1 + 1)u + 1. (87)

If γ2 �= 0, then the transformation u = − γ1yx

2γ2y
transforms (87) into the linear equation

yxxxx = −2K1yxxx − xyxx − (γ1 + 1)yx − 2
γ2

γ1
y. (88)

5. Fourth Painlevé hierarchy

The fourth Painlevé equation,

uxx = u2
x

2u
+

3

2
u3 + 4xu2 + 2(x2 − α)u +

β

u
, (89)

can be obtained as the compatibility condition of the linear system (1) with the following
matrices A and B [4, 5]:

B = B0λ
2 + B1λ + B2, A =

4∑
j=0

Ajλ
3−j ,

B0 = 1

2
σ3, B1 =

(
0 iw
iv 0

)
, B2 =

(
u 0
0 −u

)
,

A0 = 1

2
σ3, A1 = B1, A2 =

(
x + u 0

0 −x − u

)
,

A3 =
(

0 i(wx + 2xw)

i(2xv − vx) 0

)
, A4 = γ0σ3, u = vw.

(90)

Following the same method as in the previous sections, we take A and B in the following form:

A =
2m+2∑
j=0

Ajλ
2m+1−j , B = B0λ

2 + B1λ + B2, (91)

13
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where m is a positive integer. Furthermore, we set

B0 = 1

2
σ3, B1 =

(
0 p

q 0

)
, B2 =

(−pq 0
0 pq

)
,

A0 = 1

2
σ3, A2j = a2j σ3, j = 1, . . . , m,

A2j+1 =
(

0 bj

cj 0

)
, j = 0, 1, . . . , m, A2m+2 = γ0σ3.

(92)

The compatibility condition of equation (1) gives

A2m+2,x = [B2, A2m+2], A2m+1,x = B1 + [B1, A2m+2] + [B2, A2m+1],

A2m,x = 2B0 + [B0, A2m+2] + [B1, A2m+1] + [B2, A2m],

Aj,x = [B0, Aj+2] + [B1, Aj+1] + [B2, Aj ], j = 0, 1, 2, . . . , 2m − 1,

0 = [B0, A1] + [B1, A0], 0 = [B0, A0].

(93)

Substituting Aj and Bj from (92) into (93), we find that A1 = B1 and Aj , j = 2, 3, . . . , 2m+1,

can be determined by the following formulae:

a2j,x = pc2j+1 − qb2j+1, j = 1, 2, . . . , m − 1,

b2j−1,x = b2j+1 − 2pa2j − 2pqb2j−1, j = 1, 2, . . . , m,

c2j−1,x = −c2j+1 + 2qa2j + 2pqc2j−1, j = 1, 2, . . . , m,

a2m,x = 1 + pc2m+1 − qb2m+1,

(94)

c2m+1,x − q(2pc2m+1 + 2γ0 + 1) = 0, (95)

and

b2m+1,x + p(2qb2m+1 + 2γ0 − 1) = 0. (96)

The system (95)–(96) has the following first integral:

m+1∑
j=1

b2j−1c2m+3−2j +
m∑

j=1

a2j a2m−2j+2 = 2x(a2 + pq) + γ1, (97)

where γ1 is a constant of integration.
In order to derive a hierarchy of the ordinary differential equation, we proceed as follows.

Define u = −pq, v = px

p
, and introduce the notation Uj , Vj , j = 0, 1, . . . , m as follows:

Uj = a2j+2 − K2j+2, j = 0, 1, . . . , m − 2,

Um−1 = a2m − x,

Um = 2x(a2 − 2u) −
m+1∑
j=1

b2j−1c2m+3−2j −
m∑

j=1

a2j a2m−2j+2,

Vj = 1

p
b2j+3 − 2K2j+2, j = 0, 1, . . . , m − 2,

Vm−1 = 1

p
b2m+1 − 2x,

Vm = 1

p
b2m+1,x + 2qb2m+1 + 2Um + 2x(2u − v) − 2,

(98)
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where Kj are constants. Then equations (96) and (97) can be written in the form

Um + 2xu + γ1 = 0, Vm + 2xv + 2γ0 + 2γ1 + 1 = 0. (99)

Equation (94) implies that Uj , Vj , j = 0, 1, . . . , m, satisfy(
Uj

Vj

)
= RIV

(
Uj−1

Vj−1

)
+ 2K2j

(
u

v

)
, (100)

where RIV is the recursion operator

RIV =
(

−Dx − 2u + v + D−1
x (2ux − vx) 2u − D−1

x ux

−2Dx − 4u + 2v + 2D−1
x (2ux − vx) Dx + 2u + v − 2D−1

x ux

)
. (101)

Using (94), we find

a2 =
{
u + x, m = 1,

u + K2, m �= 1,

b3 = p(v + 2a2 − 2u),

(102)

and hence we have U0 = u and V0 = v. Thus (100) implies that(
Uj

Vj

)
= Rj

IV

(
u

v

)
+ 2

j−1∑
i=1

K2iRj−i

IV

(
u

v

)
+ 2K2j

(
u

v

)
. (103)

Therefore equation (99) can be written as

Rm
IV

(
u

v

)
+ 2

m−1∑
i=1

K2iRm−i
IV

(
u

v

)
+ 2x

(
u

v

)
+

(
γ1

γ0 + γ1 + 1

)
=

(
0
0

)
. (104)

The coefficients A and B in the linear problem (1) of the hierarchy (104) has the form
(91), where

B0 = 1

2
σ3, B1 =

(
0 p

− u
p

0

)
, B2 =

(
u 0
0 −u

)
,

A0 = 1

2
σ3, A1 = B1, A2j = a2j σ3, j = 1, . . . , m,

A2j+1 =
(

0 bj

cj 0

)
, j = 1, . . . , m, A2m+2 = γ0σ3,

(105)

p satisfies px = pv, a2j , b2j+1 and c2j+1, j = 1, 2, . . . , m are given by

a2j = Uj−1 + K2j , j = 1, . . . , m − 1,

a2m = Um−1 + x,

b2j+1 = p(Vj−1 + 2K2j ), j = 1, . . . , m − 1,

b2m+1 = p(Vm−1 + 2x),

c2j+1 = 1

p
[DxUj−1 − u(Vj−1 + 2K2j )], j = 1, . . . , m − 1,

c2m+1 = 1

p
[DxUm−1 − u(Vm−1 + 2x)].

(106)

As usual, when m = 1, u satisfies the fourth Painlevé equation (89). Next we study the case
m = 2.

Example 1. When m = 2, (104) gives the following system for u and v:
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uxx = (3v + 2K2)ux − 3uv2 − 4K2uv + 2u3 + 2K2u
2 − 2xu − γ1, (107a)

vxx = −(3v + 2K2)vx + 2(3v + 2K2)ux − v3 − 6uv2 − 2K2v
2 − 2xv

+ 6u2v − 4K2uv + 4K2u
2 − (2γ0 + 2γ1 + 1). (107b)

The elimination of v between (107a) and (107b) gives a fourth-order equation for u.

The linear system for (107a) and (107b) is given by (1) with B = B0λ
2 + B1λ + B2, A =∑6

j=0 Ajλ
5−j , where Bj , j = 0, 1, 2, and Aj , j = 0, 1 are given by (105) and

A2 = (u + K2)σ3, A3 =
(

0 p(v + 2K2)
1
p
(ux − uv − 2K2u) 0

)
,

A4 = −(ux + u2 − 2uv − 2K2u − x)σ3, A5 =
(

0 b5

c5 0

)
, A6 = γ0σ3,

b5 = p(vx − 2ux + 2uv − 2u2 + 2K2v + 2x),

c5 = −1

p
[uxx − 2(v + K2)ux − uvx − 2u3 + 2u2v + uv2 + 2K2uv + 2xu].

(108)

Once again we can derive a hierarchy of differential equations, a fourth Painlevé hierarchy.
This hierarchy was given before [10]. Indeed the transformation y = −ux + uv −u2, w = −v

transforms the system (107a) and (107b) into the system

yxx =
[
yx + 2y(w − k2) − γ1 − γ0 + 1

2

]2 − (
γ0 − 1

2

)2

[2y − wx + w2 − 2K2w + 2x]

− 2(yw)x + 2K2yx − y[2y − wx + w2 − 2K2w + 2x], (109)

wxx = (3w − 2K2)wx − 2y(3w − 2K2) − w3 + 2K2w
2 − 2xw + (2γ0 + 2γ1 + 1).

The system (109) is the second member of the fourth Painlevé hierarchy given in [6]. Therefore
we have another linear problem for the fourth Pianlevé hierarchy given in [6].

5.1. Special solutions

In this subsection, we will show that the fourth Painlevé hierarchy (104) admits special
solutions in terms of the second Painlevé hierarchy (39).

Suppose that m = 2n, p = 1, 2γ1 + 2γ0 + 1 = 0,K4j−2 = 0, j = 1, 2, . . . , n. Then
u = −q, v = 0, and the hierarchy (99) reduces to the following hierarchy:

U2n + 2xu + γ1 = 0, V2n = 0. (110)

The operator (101) becomes

R =
(

−Dx − 2u + 2D−1
x ux 2u − D−1

x ux

−2Dx − 4u + 4D−1
x ux Dx + 2u − 2D−1

x ux

)
. (111)

Now we will use induction to prove that

U2j = (Dx − 2u)
(
Dx + 2u − 2D−1

x ux

)
U2j−2 + 2K4ju, j = 1, 2, . . . , n,

V2j = 0, j = 1, 2, . . . , n,

U2j+1 = −(
Dx + 2u − 2D−1

x ux

)
U2j , j = 1, 2, . . . , n − 1,

V2j+1 = 2U2j+1, j = 1, 2, . . . , n − 1.

(112)
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First, we note that U0 = u, V0 = 0. Thus (100) gives U1 = −(
Dx + 2u − 2D−1

x ux

)
U0,

V1 = 2U1, V2 = (
Dx + 2u − 2D−1

x ux

)
(V1 − 2U1) = 0, and

U2 = −(Dx − 2u)U1 + 2K4u

= (Dx − 2u)
(
Dx + 2u − 2D−1

x ux

)
U0 + 2K4u. (113)

Hence the formulae (112) are true when j = 1.

Assume that (112) is true for j = k, 1 � k � n− 1. Then substituting V2k = 0 into (100)
implies that U2k+1 = −(

Dx + 2u − 2D−1
x ux

)
U2k and V2k+1 = −2

(
Dx + 2u − 2D−1

x ux

)
U2k =

2U2k+1. Since V2k+2 = (
Dx + 2u − 2D−1

x ux

)
(V2k+1 − 2U2k+1), we get V2k+2 = 0. Using (100),

V2k+1 = 2U2k+1, and U2k+1 = −(Dx + 2u − 2D−1
x ux)U2k , we get

U2k+2 = −(
Dx + 2u − 2D−1

x ux

)
U2k+1 +

(
2u − D−1

x ux

)
V2k+1 + 2K4k+4u

= −(Dx − 2u)U2k+1 + 2K4k+4u

= (Dx − 2u)
(
Dx + 2u − 2D−1

x ux

)
U2k + 2K4k+4u. (114)

This ends the proof.
Now using (Dx − 2u)

(
Dx + 2u − 2D−1

x ux

) = D2
x − 4u2 + 4uD−1

x ux = RII , U0 = u, we
obtain

U2j = RIIU2j−2 + 2K4ju, (115)

and hence

U2j = Rj

II u + 2
j−1∑
i=1

K4iRj−i

I I u + 2K4ju. (116)

Thus equation (110) yields

Rn
II u + 2

n−1∑
i=1

K4iRn−i
I I u + 2xu + γ1 = 0. (117)

The hierarchy (117) is equivalent to the second Painlevé hierarchy (39). Therefore, if u is a
solution of the 2n th member of the fourth Painlevé hierarchy (104) with v = 0, 2γ1 + 2γ0 +
1 = 0,K4j−2 = 0, j = 1, 2, . . . , n, then u satisfies the nth member of the second Painlevé
hierarchy (117).

The linear problem for the second Painlevé hierarchy (117) is given by

B = B0λ
2 + B1λ + B2, A =

4n+2∑
j=0

Ajλ
4n+1−j ,

B0 = 1

2
σ3, B1 =

(
0 1

−u 0

)
, B2 = uσ3, A0 = 1

2
σ3, A1 = B1

A2j = a2j σ3, j = 1, . . . , 2n,

A2j+1 =
(

0 bj

cj 0

)
, j = 1, . . . , 2n, A4n+2 = γ0σ3,

(118)
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where aj , b and cj are given by

a4j = −(
Dx + 2u − 2D−1

x ux

)
U2j−2 + K4j , j = 1, . . . , n − 1,

a4j−2 = U2j−2, j = 1, . . . , n,

a4n = −(
Dx + 2u − 2D−1

x ux

)
U2n−2 + x,

c4j−1 = DxU2j−2, j = 1, . . . , n,

c4j+1 = −[RIIU2j−2 + 2K4ju], j = 1, 2, . . . , n − 1,

c4n+1 = −[RIIU2n−2 + 2xu], j = 1, 2, . . . , n,

b4j−1 = 0, b4j+1 = 2a4j , j = 1, 2, . . . , n.

(119)

Therefore the above relation between the fourth Painlevé hierarchy (104) and the second
Painlevé hierarchy (117) gives rise to the new linear problem (118) for the second Painlevé
hierarchy.

For example, the second member of the fourth Painlevé hierarchy (104), that is
equations (107a) and (107b), has the special solution K2 = 0, 2γ0 + 2γ1 + 1 = 0, v = 0
and u satisfies the second Painlevé equation

uxx = 2u3 − 2xu + γ0 + 1
2 . (120)

The second Painlevé equation (120) has the following new linear problem:

B = B0λ
2 + B1λ + B2, A =

6∑
j=0

Ajλ
5−j ,

B0 = 1

2
σ3, B1 =

(
0 1

−u 0

)
, B2 = uσ3, A0 = 1

2
σ3,

A1 = B1, A2 = uσ3, A3 =
(

0 0
ux 0

)
, A4 = −(ux + u2 − x)σ3,

A5 =
(

0 −2(ux + u2 − x)

−uxx + 2u3 − 2xu 0

)
, A6 = γ0σ3.

(121)
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